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Abstract. For a bi-partite quantum system defined in a finite dimensional Hilbert-space we investigate
in what sense entanglement change and interactions imply each other. For this purpose we introduce
an entanglement-operator, which is then shown to represent a non-conserved property for any bi-partite
system and any type of interaction. This general relation does not exclude the existence of special initial
product states, for which the entanglement remains small over some period of time, despite interactions.
For this case we derive an approximation to the full Schrödinger-equation, which allows the treatment of
the composite systems in terms of product states. The induced error is estimated. In this factorization-
approximation one subsystem appears as an effective potential for the other. A pertinent example is the
Jaynes-Cummings model, which then reduces to the semi-classical rotating wave approximation.

PACS. 03.65.Yz Decoherence; open systems; quantum statistical methods – 42.50.Ct Quantum description
of interaction of light and matter; related experiments – 03.65.Ud Entanglement and quantum nonlocality
(e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.)

1 Introduction

During the last decades entanglement has been investi-
gated under various aspects. The famous EPR-paradox,
for example, has led to a discussion of the most basic prin-
ciples of quantum physics [1]. The Gedanken experiment
based on “Schrödinger’s Cat” may be seen as an attempt
to challenge the consistency of quantum mechanics: it has
been argued that this situation could only be understood
by allowing for entanglement between the atom and the
cat which, on the other hand, should be considered a clas-
sical object [2]. But, by definition, a classical object cannot
become entangled with any other system.

Since it has been shown, that quantum algorithms have
the potential to outperform corresponding classical com-
puting [3–5], considerable efforts have been made to im-
plement gates like the so-called quantum controlled NOT-
gate (QCNOT). Performing a QCNOT generically results
in preparing an entangled state. Meanwhile various ex-
perimental schemes to prepare entangled states have been
developed [6,7].

In all these approaches entanglement has been in the
very center of interest. The question was always either how
to interpret the state of two systems being entangled, or
how to deliberately produce entanglement and detect it,
once it has been produced.

Rather neglected seems to have been the question of
entanglement as an unavoidable “waste product” of quan-
tum mechanical dynamics. Little attention has been paid
to the fact that it cannot be taken for granted that any two
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interacting systems will remain in a product state, even if
they have been in one in the beginning [11,14]. This means
that there is always the possibility for them to entangle.
And if they are entangled, it is impossible to assign two
separate wavefunctions to the subsystems. Nevertheless
this is typically done in standard “textbook level” quan-
tum mechanics: the particle in a box, e.g., is always de-
scribed by a wavefunction although it definitely interacts
with the box that necessarily consists of a many particle-
quantum-system itself and therefore could become entan-
gled with it. There is no discussion of the electron going
through the double slit being possibly entangled with the
material defining the slit itself.

But since these approximations typically lead to ex-
cellent results, it should be possible to point out why. In
which situations is it reasonable to neglect entanglement
and treat whole complicated systems as effective poten-
tials for another quantum-system?

Apart from the rather academic desire to understand
the basis of this “classical limit”, there is also a good prac-
tical reason to address such questions.

An important prerequisite of all quantum computer
designs suggested so far is the possibility of so-called lo-
cal unitary transformations. These should be performed
selectively on each effective spin (q-bit) through poten-
tials that are supposed to be controllable in time [15].
But again, in reality, those potentials can only be imple-
mented by means of other complicated quantum-systems
that could possibly entangle with those spins: this would
inevitably lead to decoherence. But quantum computers
need to be coherent. In that sense the problem of en-
tanglement through interaction (as required by external
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control) could even challenge the implementation of any
real quantum computer.

Our paper is organized as follows: we first specify a the-
orem relating some purity measure P (as an entanglement
test) to inter-subsystem interactions (Sect. 2). For the
proof of this theorem (Sect. 3) we proceed as follows.

Starting from the von-Neumann-equation, which de-
scribes the dynamics of the density operator, we proceed
by inserting an expansion of the density operator into this
equation. The result is an equation only in terms of the
expansion coefficients that has exactly the form of the
Schrödinger-equation and will therefore be called “quasi-
Schrödinger-equation”. It is now possible to define a lin-
ear operator in the space of those coefficients which has
an expectation value equal to P , and will therefore be
called “purity operator”. Since the dynamics of those coef-
ficients are controlled by an equation that is formally iden-
tical with the Schrödinger-equation (including a “quasi-
Hamiltonian”), it is possible to reduce the question of P
being conserved or not, to the problem whether the com-
mutator of the purity operator and quasi-Hamiltonian will
vanish or not.

Thus, the mathematical scheme used here is essentially
the same as used in standard quantum mechanics to iden-
tify conserved quantities. Only the space of the state vec-
tor and the interpretation of the considered quantities, are
different.

The last step will be to show, that the above com-
mutator becomes nonzero whenever the full Hamiltonian
involves any kind of interaction.

However, even in the presence of interactions the
system may remain “almost” unentangled. In Section 4
we use our quasi-Schrödinger formulation to derive the
factorization-approximation with its effective potentials
for this case. In Section 5 the induced error is estimated
to lowest order. In Section 6 we apply the results to the
Jaynes-Cummings-model.

2 Theorems

There is a still ongoing debate on entanglement mea-
sures [9]. A lot of propositions have been made, but it
seems still rather difficult to introduce a general entangle-
ment measure that satisfies all conditions that have been
imposed on such a measure and, at the same time, is ap-
plicable for any number of subsystems and any case (pure
and mixed states of the whole system). And it seems even
more difficult to construct a measure in such a way that it
could actually be calculated (or measured!) for reasonably
complicated situations.

Fortunately, it is possible to introduce a simple mea-
sure under specific conditions: if the state of the whole
system is a pure state, and the full system is being re-
garded as divided into two subsystems, a convenient en-
tanglement measure is 1− P , where

P = TrI

{(
ρ̂I
)2
}

= TrII

{(
ρ̂II
)2}

; (2.1)

here ρ̂I, ρ̂II are the reduced density matrices of the corre-
sponding subsystems.

Entanglement between to subsystems originating from
unitary quantum evolution, can only result from interac-
tions1. If two systems do not interact they can be treated
without even taking the other one into account. So, if they
are both in pure states at the beginning, which means they
are in a product state with respect to the whole system,
they will remain so forever under these conditions.

One may ask now whether two systems that interact
might remain entanglement-free, depending for example
on the kind of systems that interact, or on the kind of
interaction that is considered.

Concerning this question we are aware of only rather
vague statements in the literature. A typical formulation
due to d’Espagnat reads:

Theorem A – “In general it is impossible to describe systems
that interacted in the past by separate wavefunctions” [11].

But does this always have to be the case? To address
this problem we will prove the following theorem for finite
discrete Hilbert-spaces.

Theorem B – “There exists no interaction what so ever be-
tween arbitrary systems, such that the entanglement measure
(1 – P) remains conserved”.

This theorem does not imply that there cannot be ini-
tial states, starting from which the system might remain in
a product state, though it can be shown that those states,
if they exist at all, only play a negligible role in typical
larger systems. But it definitely means, that there must
be initial states that lead to entanglement, even between
the particle and the box-system, or between the electron
and the slit-system.

Further consequences of theorem B can most conve-
niently be assessed from an approximation-scheme that is
valid as long as the systems remain approximately unen-
tangled, as will be shown in Sections 4, 5 and 6.

3 Proof of theorem B

3.1 Basis operators

The operators into which the density matrix will be
expanded here, are products of the generators of the re-
spective SU(n) groups, where one set of generators corre-
sponds to one subsystem [8].

The basis operators for the different subsystems are
defined in the following way:

Q̂iν :=

{ 1√
nν

1̂ν : i = 0
1√
2
λ̂νi : i 6= 0

(3.1)

1 Non-unitary transformations can do without direct inter-
actions: this phenomenon has become known as entanglement
swapping [16].
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where, ν denotes the index of the subsystem, nν the num-
ber of levels of subsystem ν (dimension) and λ̂νi the ith
generator of the SU(nν) group, i = 1, 2 . . . n2

ν − 1.
The basis operators of the full system are defined as

dyadic products of the basis operators of the subsystems,

Q̂i :=
N∏
ν=0

⊗ Q̂iν (3.2)

where N is the number of subsystems.
Thus any basis operator is defined by a sequence of N

indices iν (abbreviated as i), each index specifying, which
generator i should be applied to the corresponding sub-
system ν. The operators constructed according to these
rules form a complete and orthonormal set in the follow-
ing sense:

Tr
{
Q̂iQ̂j

}
= δij :=

N∏
ν=1

δiνjν Â =
∑

i

Q̂iTr
{
Q̂iÂ

}
(3.3)

where Â is an arbitrary operator.
Representing the density matrix in the case of only two

subsystems as

ρ̂ =
∑
i,j

qijQ̂i ⊗ Q̂j (3.4)

where the index i corresponds to subsystem I and the
index j to subsystem II, we find

ρ̂I =
√
nII

∑
i

qi0Q̂i P = nII

∑
i

q2
i0. (3.5)

The objects we are going to examine are thus specified in
terms of their expansion coefficients.

3.2 Quasi-Schrödinger-equation

The von-Neumann-equation reads:

i~
d
dt
ρ̂ =

[
Ĥ, ρ̂

]
. (3.6)

Inserting the expansion (3.4) yields:

i~
∑

i

d
dt
qiQ̂i =

∑
j

[
Ĥ, Q̂j

]
qj. (3.7)

After multiplying by Q̂m, taking the trace and applying
some trace theorems, we get:

i~
d
dt
qm =

∑
j

Hmjqj Hmj := Tr
{
Ĥ
[
Q̂j, Q̂m

]}
· (3.8)

This equation (hereafter called quasi-Schrödinger-
equation) has evidently the Schrödinger-form. The

hermiticity of H is easily shown by examining the
corresponding matrix elements,

H∗mj = Tr
{
Ĥ
[
Q̂j, Q̂m

]}∗
= Tr

{(
Ĥ
[
Q̂j, Q̂m

])†}
= Tr

{
Ĥ
[
Q̂m, Q̂j

]}
= Hjm. (3.9)

We can even define a formal bracket notation: for this
purpose we re-arrange the multiple indices j as a simple
index s and introduce a set of real orthogonal basis vectors

|s〉 = |s〉∗ (3.10)

with

〈s|s′〉 = δss′ 1̂ =
∑
s

|s〉〈s| (3.11)

such that

Hss′ = 〈s|H|s′〉 qs = 〈s|q〉 · (3.12)

Inserting (3.12) into (3.8) yields:

i~
d
dt
|q〉 = H|q〉 (3.13)

with the infinitesimal solution

|q(dt)〉 =
(

1 +
1
i~
Hdt

)
|q(0)〉 · (3.14)

On the basis of this formal equivalence it is now possible
to investigate the conservation of some quantity A in the
space of the vectors |q〉 (〈q|A|q〉 =

∑
s,s′ qsAss′qs′), by

evaluating the commutator of A with H.

3.3 Purity operator

We first note that our purity measure, P , can be given the
mathematical form of an expectation value:

〈q|P|q〉 = P. (3.15)

To find P , we go back to the explicit multi-index notation
(for two subsystems),

P =
∑
s,s′

qsPss′qs′ =
∑
i,j,u,v

qijPijuvquv. (3.16)

If we require (see (3.5))

〈q|P|q〉 = nII

∑
i

q2
i0 (3.17)

it follows that

Pijuv = nIIδiuδjvδ0j (3.18)
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i.e., up to a normalization factor P is a projector, pro-
jecting out the components of |q〉 that refer locally to sub-
system I, those components that would read qi0 in multi-
index notation for a bi-partite system. Using the bracket
notation P reads:

P = nII

∑
w

|wI
〉〈
wI|. (3.19)

Adding the complementary projector that projects out all
the other components, that is all those that do not refer
locally to subsystem I, we can write the unity operator as:

1̂ =
∑
w

|wI〉〈wI|+
∑
k

|kR〉〈kR|. (3.20)

Using this representation, H, which controls the complete
dynamics, can be split up into:

H = LI +R+W (3.21)

where

LI :=
∑
l,m

LI
lm|lI〉〈mI|

R :=
∑
i,j

Rij |iR〉〈jR|

W :=
∑
l,j

(
Wlj |lI〉〈jR|+Wjl|jR〉〈lI|

)
.

One easily convinces oneself, that[
P ,LI

]
= 0 and [P ,R] = 0. (3.22)

Finally, the commutator [P ,W] reads:

[P ,W] = n2
II

∑
w,j

(
Wwj |wI〉〈jR| −Wjw|jR〉〈wI|

)
. (3.23)

We now convince ourselves that not all matrix-elements
Wwk can be identically zero in the presence of interactions.
For this purpose we define “interaction” operationally: two
subsystems are said to interact, if the dynamics of one sub-
system, at least for some initial state (but generically for
any initial state) depend on the state of the other subsys-
tem.

The state of subsystem I at time dt is completely de-
scribed by the projection

|qI(dt)〉 :=
∑
w

|wI〉〈wI|q(dt)〉 · (3.24)

Substituting |q(dt)〉 according to the evolution equa-
tion (3.14) with H given by (3.21) we obtain

|qI(dt)〉 = |qI(0)〉

+
1
i~

dt

∑
w,m

LI
wm|wI〉〈mI|q(0)〉+

∑
w,j

Wwj |wI〉〈jR|q(0)〉

 ·
(3.25)

As only the components 〈jR|q〉 carry information about
subsystem II not all W -matrix-elements can be zero for
interacting subsystems.

Since the two terms that are summed over in (3.23)
obviously belong to different (off diagonal) parts of H,
they cannot cancel each other. Thus we conclude,

[P ,H] 6= 0, (3.26)

for any sort of interaction, which completes the proof of
theorem B.

4 Factorization-approximation and effective
potentials

As we have shown, there is, a priori, no reason to as-
sume that two interacting systems remain in pure states.
Nevertheless, as we will argue now, it is a reasonable ap-
proximation to treat one subsystem as if it was in a pure
state, and the other one as an effective potential for the
former, as long as 1− P remains small over the period of
time under investigation.

4.1 Factorization-approximation

We start with the quasi-Schrödinger-equation (3.8) for two
subsystems,

i~
d
dt
qij = −

∑
l,m

Tr
{
Ĥ
[
Q̂ij , Q̂lm

]}
qlm (4.1)

and consider only those equations which refer to the two
subsystems locally, not to the correlations. We thus need
to study:

I: i~
√
nII

d
dt
qi0 = −

∑
l,m

Tr

{
Ĥ

[
λ̂i√

2
, Q̂lm

]}
qlm

II: i~
√
nI

d
dt
q0j = −

∑
l,m

Tr

{
Ĥ

[
λ̂j√

2
, Q̂lm

]}
qlm (4.2)

i.e., we have to examine the relation between “local”
(qi0, q0j) and “global” (qij) coefficients. We define a ten-
sor M in the following way:

Mij :=
〈
Q̂i ⊗ Q̂j

〉
−
〈
Q̂i
〉〈
Q̂j
〉

(4.3)

or, according to (3.4) and (3.3):

Mij = qij −
√
nInIIqi0q0j . (4.4)

Obviously, for a product state all Mij ’s have to vanish. If
the two subsystems get correlated (entangled), the Mij ’s
will take on nonzero values, so that

β :=
∑
i,j

M2
ij (4.5)
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can be considered as an alternative entanglement mea-
sure. It is indeed possible to derive a relation between β
and P [10]:

β < 1− P 2. (4.6)

If we now solve (4.4) for qij and insert the result into (4.2)
we get for subsystem I:

i~
√
nII

d
dt
qi0 =

−
∑
l,m

Tr

{
Ĥ

[
λ̂i√

2
, Q̂lm

]}(√
nInIIql0q0m +Mlm

)
.

(4.7)

Using (3.5) and (4.6) we find

nInII

∑
l,m

q2
l0q

2
0m = P 2

∑
l,m

M2
lm < 1− P 2, (4.8)

so that it seems reasonable to neglect the Mlm-term and
only keep the

√
nInIIql0q0m-term in (4.7), as long as P

stays close to 1. The error that occurs if this approxi-
mation is used over a period of time instead of the true
Schrödinger-equation, will be estimated later.

With the above approximation we get after performing
the sum over m:

i~
√
nII

d
dt
qi0 = −

∑
l

Tr

{
Ĥ

[
λ̂i√

2
,

√
nII

2
λ̂l

]
⊗ ρ̂II

}
ql0.

(4.9)

The latter is a quasi-Schrödinger-equation for subsystem I
with a quasi-Hamiltonian depending on the momentary
local state of subsystem II. It is easy to check that the
quasi-Hamiltonian of this equation, although depending
on time, will always be Hermitian. This means that in this
approximation

√
nII

∑
i q

2
i0 = P is a conserved quantity.

Both subsystems will remain in pure states and unentan-
gled if the initial state was a product state.

Performing the sum over l and taking the partial trace
with respect to subsystem II yields:

i~
√
nII

d
dt
qi0 = −TrI

{
TrII

{
Ĥρ̂II

}[ λ̂i√
2
, ρ̂I

]}
· (4.10)

Since ρ̂1 and ρ̂2 always represent pure states in this case,
we can use separate wavefunctions to re-express local ex-
pectation values, such as:

TrII

{
Ĥρ̂II

}
=
〈
ψII|Ĥ|ψII

〉
· (4.11)

Attention should be paid to the fact that this expectation
value is still an operator with respect to subsystem I, if Ĥ
contains interactions.

Following the standard trace theorems, we get:

i~
√
nII

d
dt
qi0 = TrI

{
λ̂i√

2

[〈
ψII|Ĥ|ψII

〉
, ρ̂I
]}
· (4.12)

Multiplying the ith equation by λ̂i/
√

2, summing over i,
exploiting the completeness of the λ̂i/

√
2’s and using (3.5)

leads to:

i~
d
dt
ρ̂I =

[〈
ψII|Ĥ|ψII

〉
, ρ̂I
]
. (4.13)

This equation is of the same form as the von-Neumann-
equation. Since the reduced density operators ρ̂I, ρ̂II rep-
resent pure states we can change to the corresponding
Schrödinger-equation, without loss of generality:

i~
∂

∂t
|ψI〉 = 〈ψII|Ĥ|ψII〉|ψI〉 · (4.14)

After splitting the Hamiltonian Ĥ into local (L̂I, L̂II) and
interaction (Ŵ ) parts and adding the corresponding equa-
tion of subsystem II, we find the complete system of
equations:

i~
∂

∂t
|ψI〉 =

(
L̂I + 〈ψII|L̂II|ψII〉+ 〈ψII|Ŵ |ψII〉

)
|ψI〉

i~
∂

∂t
|ψII〉 =

(
L̂II + 〈ψI|L̂I|ψI〉+ 〈ψI|Ŵ |ψI〉

)
|ψII〉· (4.15)

4.2 Gauge

Since the overall phases of both subsystems are arbitrary
and can be chosen freely, a method, which is completely
analogous to the Lorentz gauge in classical electrodynam-
ics, can be used to simplify these equations even further.

Applying the substitutions

eiαI(t)|φI〉 := |ψI〉 eiαII(t)|φII〉 := |ψII〉 (4.16)

and choosing the phases as〈
ψII|L̂II|ψII

〉
+ ~α̇I(t) = 0〈

ψI|L̂I|ψI
〉

+ ~α̇II(t) = 0 (4.17)

transforms the system of equations into:

i~
∂

∂t
|φI〉 =

(
L̂I + 〈φII|Ŵ |φII〉

)
|φI〉

i~
∂

∂t
|φII〉 =

(
L̂II + 〈φI|Ŵ |φI〉

)
|φII〉· (4.18)

This is a coupled set of nonlinear first-order differential
equations which, although it does not necessarily create
unitary dynamics, keeps the absolute values of the wave-
functions of both subsystems fixed. Instead of the (nInII)
dimensions of the exact treatment, this approximation has
only (nI + nII) dimensions (number of equations).

Each of these equations can be considered as an “or-
dinary” Schrödinger-equation of one system, in which the
influence of the other one appears as an effective poten-
tial. This approach may be termed “quasi-classical” with
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respect to interactions. It underlies, e.g. the potential for
the particle in a box.

Similar equations are well-known in the theory of many
particle systems (for example the Hartree-equation [12]).
But in those cases they are basically justified by their
success. We are now going to derive a criterion for their
applicability.

5 Error estimation

We will now examine the deviation of the solution in
factorization-approximation |φ(t)〉 from the solution of the
full Schrödinger-equation |ψ(t)〉, under the condition that
|φ(0)〉 = |ψ(0)〉. We will expand this deviation in terms of
an effective interaction which will allow us to connect the
resulting error with the purity P .

The Schrödinger-equation reads:

i~
∂

∂t
|ψ〉 =

(
L̂I + L̂II + Ŵ

)
|ψ〉 · (5.1)

With |φ〉 := |φI〉 ⊗ |φII〉, the factorization-approximation
reads:

i~
∂

∂t
|φ〉 =

(
L̂I + L̂II + 〈φI|Ŵ |φI〉+ 〈φII|Ŵ |φII〉+ α

)
|φ〉

(5.2)

where α denotes an insignificant overall phase, and

|φ〉 := |φI〉 ⊗ |φII〉 · (5.3)

Introducing the deviation |θ〉 as

|ψ〉 =: |θ〉+ |φ〉, (5.4)

and the abbreviation

V̂ := Ŵ −
〈
φI|Ŵ |φI

〉
−
〈
φII|Ŵ |φII

〉
− α (5.5)

we can write a differential equation for this deviation |θ〉
just in terms of |φ〉 and |θ〉 as

∂

∂t
|θ〉 =

1
i~

(
Ĥ|θ〉+ V̂ |φ〉

)
. (5.6)

Defining

|θ′〉 := e
iĤt
~ |θ〉 (5.7)

we can rewrite (5.6) as

∂

∂t
|θ′〉 =

1
i~

e
iĤt
~ V̂ |φ〉 · (5.8)

The exponential may be written as

e
iĤt
~ =

∑
n

|ψn(0)〉〈ψn(t)|=
∑
n

|φn(0)〉
(
〈φn(t)|+〈θn(t)|

)
.

(5.9)

Here the |φn(0)〉 = |ψn(0)〉 are chosen to form a com-
plete orthonormal set. The |φn(t)〉 as solutions in factor-
ization approximation form a complete orthonormal set at
all times if they did so at t = 0, so they will be used as a
basis. Since they all obey (5.8) we get, using (5.9):

|θ′i(t)〉 =
1
i~
∑
n

|φn(0)〉

×
∫ t

0

(
〈φn(t′)|+ 〈θn(t′)|

)
V̂ |φi(t′)〉dt′. (5.10)

Transforming back to the unprimed quantities, we find

|θi(t)〉 =
1
i~
∑
n

(
|φn(t)〉 + |θn(t)〉

)
×
∫ t

0

(
〈φn(t′)|+ 〈θn(t′)|

)
V̂ |φi(t′)〉dt′. (5.11)

By iterating this equation we can produce an expansion
of |θi(t)〉 in terms of time integrals over matrix elements
of the effective interaction V̂ . As long as those matrix ele-
ments remain small, a truncation scheme can be applied,
which gives to first order:

|θi(t)〉 =
1
i~
∑
n

|φn(t)〉
∫ t

0

〈φn(t′)|V̂ |φi(t′)〉dt′. (5.12)

We return now to the double-index notation

|φij〉 := |φI
i〉 ⊗ |φII

j 〉,
〈
φI
i|φI

i′

〉
= δi′i,

〈
φII
j |φII

j′

〉
= δj′j

(5.13)

and take |ψ00〉(|φ00〉) as the solution(approximation) un-
der consideration. We use the |φij〉’s as a basis to write
the full solution

|ψ00〉 =
√

1−
∑
i,j

|θij |2 |φ00〉+
∑
i,j

θij |φij〉, θ00 := 0.

(5.14)

Its overlap of this solution with the solution in
factorization-approximation (“fidelity”) is exactly
given by

|〈ψ00|φ00〉|2 = 1−
∑
i,j

|θij |2. (5.15)

On the other hand, the square-root of the purity of ei-
ther subsystem of the state |ψ00〉 to first order in |θij |2 is
given by

√
P ≈ 1−

∑
i6=0,j 6=0

|θij |2. (5.16)

Obviously the two quantities are the same except for
the θi0’s and the θ0j ’s. Computing the θij ’s from equa-
tion (5.12) yields:

θij =
1
i~

∫ t

0

(〈
φij |Ŵ |φ00

〉
−
〈
φ0j |Ŵ |φ00

〉
δi0

−
〈
φi0|Ŵ |φ00

〉
δ0j + αδi0δ0j

)
dt′. (5.17)
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Choosing α := 〈φ00|Ŵ |φ00〉 to satisfy the definition
θ00 := 0 from (5.14) we get

θi0(t) = 0 θ0j(t) = 0 (5.18)

so that

|〈ψ00|φ00〉|2 =
√
P (5.19)

as long as the small deviation of
√
P from 1 is domi-

nated by the lowest order term in the effective interaction
strength, as it is the case in the example in Section 6.

This means that no “local” errors are generated in first
order, any deviation occurring due to the factorization-
approximation leads to entanglement and therefore re-
duces purity.

6 Application to the Jaynes-Cummings-model

6.1 The model

The factorization-approximation will now be applied to
the Jaynes-Cummings-model. This choice is motivated by
the fact that this model can be solved exactly, hence it can
be tested whether the approximation is really applicable.
Furthermore, both methods of treating this system, the
fully quantum mechanical and the semi-classical one, are
well-known, thus the result of applying the factorization-
approximation can easily be interpreted.

The Jaynes-Cummings-model [13] describes a spin in
a magnetic field, interacting with some monochromatic
electromagnetic field. A good example is a typical NMR
experiment of any sort.

The model in rotating wave approximation is defined
by the Hamiltonian:

Ĥ = Bgµ
1
2
σ̂z + ~ω

(
â†â+

1
2

)
+ ~γ

(
â†σ̂− + âσ̂+

)
,

(6.1)

where B denotes the magnetic field, g the gyromag-
netic relation, µ Bohr’s magneton, σ̂z the operator of the
z-component of the spin, γ the coupling constant, σ̂+, σ̂−

are the creation and annihilation operators of the spin sys-
tem, ω is the frequency of the electromagnetic field and
â†, â are the creation and annihilation operators of the
electromagnetic field.

The second term describes the monochromatic electro-
magnetic field, the first term the spin in the magnetic field
and the third term their mutual interaction.

6.2 Application of the factorization-approximation

Applying the scheme (4.18) to this system yields:

i~
∂

∂t
|φS〉 =

(
Bgµ

1
2
σ̂z + ~γ

(〈
φL|â†|φL

〉
σ̂−

+
〈
φL|â|φL

〉
σ̂+
))
|φS〉 (6.2)

i~
∂

∂t
|φL〉 =

(
~ω
(
â†â+

1
2

)
+ ~γ

(〈
φS|σ̂−|φS

〉
â†

+
〈
φS|σ̂+|φS

〉
â
))
|φL〉 (6.3)

where S indicates the spin system and L the system of the
electromagnetic field. The absolute values of the expecta-
tion values 〈φS|σ̂−φS〉, 〈φS|σ̂+φS〉 are always limited by:∣∣∣〈φS|σ̂−φS

〉∣∣∣, ∣∣∣〈φS|σ̂+φS
〉∣∣∣ ≤ 1. (6.4)

The influence of the coupling terms on the evolution of the
electromagnetic field is thus negligible, if γ � ω and/or
the system of the electromagnetic field is in a highly exited
state. Thus, for example, a coherent state |α〉 with a large
parameter α is a valid solution to the equation controlling
the dynamics of the electromagnetic field.

Inserting this solution into the equation for the spin
systems leads to:

i~
∂

∂t
|φS〉 =(
Bgµ

1
2
σ̂z + ~γ

(
〈α|â+|α〉σ̂− + 〈α|â|α〉σ̂+

))
|φS〉

=
(
Bgµ

1
2
σ̂z + ~γ

√
2|α|

(
cos(ωt)σ̂x + sin(ωt)σ̂y

))
|φS〉 ·

(6.5)

This is exactly the semi-classical approach, which of-
ten produces excellent results, such as the correct Rabi-
frequency, etc.

It remains to be shown, that it was indeed justified to
use the factorization-approximation for some time τ .

6.3 Estimation of P

If the spin and electromagnetic field are in resonance,
an exact solution of the Jaynes-Cummings-model can be
found:

|n+〉 :=
1√
2

(|0〉 ⊗ |n〉+ |1〉 ⊗ |n− 1〉

|n−〉 :=
1√
2

(|0〉 ⊗ |n〉 − |1〉 ⊗ |n− 1〉, (6.6)

which satisfies the following eigenvalue equations:

Ĥ|n+〉 =
(
~ωn+ ~γ

√
n
)
|n+〉

Ĥ|n−〉 =
(
~ωn− ~γ

√
n
)
|n−〉· (6.7)

Considering the initial product state

|ψ(0)〉 =

(∑
n

An|n〉
)
⊗ |0〉, (6.8)
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we then find for the components of the Bloch vector of the
spin system:〈
σ̂x ⊗ 1̂

〉
=∑

n

−Im
(
A∗nAn+1 e−iωt

)(
sin
(
γ
(√
n+
√
n+ 1

)
t
)

− sin
(
γ
(√
n−
√
n+ 1

)
t
) )

〈
σ̂y ⊗ 1̂

〉
=∑

n

Re
(
A∗nAn+1 e−iωt

)(
sin
(
γ
(√
n+
√
n+ 1

)
t
)

− sin
(
γ
(√
n−
√
n+ 1

)
t
) )

〈
σ̂z ⊗ 1̂

〉
=
∑
n

|An|2 cos
(
2
√
nt
)
. (6.9)

From these components we find P as:

TrS

{
ρ̂2

S

}
= P =

1
2

(
1 + 〈σ̂x〉2 + 〈σ̂y〉2 + 〈σ̂z〉2

)
. (6.10)

For the initial state we again choose a coherent state (for
simplicity with a real parameter α), which means:

An = e−
1
2 |α|

2 αn√
n!
· (6.11)

Now we want to simplify the terms in (6.9). Consider:

A∗nAn+1 = e−|α|
2 αn√

n!
αn+1√
(n+ 1)!

=
(

e−|α|
2 α2n

n!

)(
α√

(n+ 1)

)
· (6.12)

The first factor describes a Poisson-distribution which is
characterized by the mean value α2 and the standard de-
viation α. Since the main weight of such a distribution is
concentrated near its mean value (98% within 3 standard
deviations), it is a reasonable approximation to keep only
contributions from this range. The second factor can be
estimated using its respective value at the boundaries of
this range:

α√
(α2 + α+ 1)

≤ α√
(nrel + 1)

≤ α√
(α2 − α+ 1)

(6.13)

where nrel denotes the n’s from within this relevant range.
If we now again only consider highly exited coherent
states, that means the limit α→∞, the upper as well as
the lower bound converges against 1. Hence in this limit:

α√
(nrel + 1)

≈ 1. (6.14)

In the same limit we also find:
√
n+

√
(n+ 1) ≈ 2

√
n

√
n−

√
(n+ 1) ≈ 0. (6.15)

For a large enough α (6.9) therefore simplifies to:〈
σ̂x ⊗ 1̂

〉
≈ sin(ωt)

∑
n

|An|2 sin
(
2γ
√
nt
)

〈
σ̂y ⊗ 1̂

〉
≈ cos(ωt)

∑
n

|An|2 sin
(
2γ
√
nt
)

〈
σ̂z ⊗ 1̂

〉
≈ −

∑
n

|An|2 cos
(
2γ
√
nt
)
. (6.16)

In this approximation the factors depending on ωt de-
scribe the Larmor-precession, while the sum terms give
rise to the Rabi-precession.

Expanding the argument of the Rabi-precession
around the mean value of the Poisson-distribution yields:

2γ
√
nt ≈ γt

(
2α+

1
α

(n− α2)

− 1
2α3

(n− α2)2 +O3(n− α2)
)
. (6.17)

Since we are only considering contributions from the rel-
evant region, that is contributions with |n − α2| ≤ α in
the limit α→∞, we can neglect any term beyond second-
order and get:

2γ
√
nt ≈ γt

(
2α+

(n− α2)
α

)
· (6.18)

Using this approximation and some addition theorems we
get on the right hand side of (6.10) fast oscillating terms
with a frequency given by the first term in (6.18) and slow
oscillating terms with a frequency given by the second
term in (6.18). Since the slow oscillating terms from the
relevant region oscillate with a frequency of the order of
γ regardless of the actual α, we expand those in time to
second order, which will be a good approximation as long
as γt remains small:

P ≈ 1− γ2t2. (6.19)

This means that in the limit of high intensities of the
electromagnetic field, the “coherence time” is independent
of the intensity itself and only depends on the strength
of the coupling. If that is weak enough, the factorization
approximation will be valid for a considerable time.

7 Summary and conclusions

We have shown that bi-partite systems with mutual inter-
actions, that remain unentangled forever, no matter which
initial product state was chosen, cannot exist.

One might argue that this is a rather weak statement:
in large systems with many degrees of freedom there might
be a large number of initial states, starting from which the
subsystems would remain entanglement-free, even though
there must also be some initial states that lead to entan-
glement.
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But the same could be argued, for example, for a classi-
cal Hamilton-system, which has no radial symmetry, say:
although angular momentum is not conserved in such a
situation in general, there might be special trajectories for
which it is conserved. But one probably would not claim
that these trajectories are of importance considering the
space of all possible trajectories, especially in systems with
many degrees of freedom.

The same holds true for the entanglement conserva-
tion: there might be special initial states that prevent the
systems from getting entangled, but it can be shown that
their relative weight decreases with the system size [17].

Thus it is, strictly speaking, unjustified to describe a
particle in a box, which is part of an interacting quantum
system, by a wave-function.

It is, nevertheless, a potentially very good approxima-
tion to describe interacting systems by pure individual
wavefunctions, if the entanglement remains small during
the time of observation. The underlying equation can then
be based on the factorization approximation; this equation
has been derived, together with a criterion for its validity.

For a spin interacting with a monochromatic electro-
magnetic field, we have shown that the criterion is ful-
filled for high enough field intensities and for a time that
only depends inversely on the coupling strength. Apply-
ing the factorization approximation then transforms the
full quantum mechanical Jaynes-Cummings-model into a
semi-classical one, in which the field acts as an external
potential.

We thank C. Granzow, A. Otte, I. Kim, F. Tonner and M.
Stollsteimer for fruitful discussions.
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